textembedding-gecko

This documentation is valid for the following list of our models:

  • textembedding-gecko-multilingual@001

  • textembedding-gecko@001

  • textembedding-gecko@003

Model Overview

A state-of-the-art text embedding model designed to convert textual data into numerical vector representations. It captures semantic meanings and relationships within the text, facilitating various natural language processing (NLP) tasks.

Setup your API Key

If you don’t have an API key for the Apilaplas API yet, feel free to use our Quickstart guide.

Submit a request

API Schema

post
Authorizations
Body
modelundefined · enumRequiredPossible values:
inputany ofRequired
string · min: 1Optional
or
string[] · min: 1Optional
dimensionsnumber | nullableOptional
auto_truncatebooleanOptionalDefault: true
task_typestring · enumOptionalPossible values:
titlestringOptional
encoding_formatstringOptional
Responses
201Success
post
POST /v1/embeddings HTTP/1.1
Host: api.apilaplas.com
Authorization: Bearer <YOUR_LAPLASAPI_KEY>
Content-Type: application/json
Accept: */*
Content-Length: 169

{
  "model": "textembedding-gecko-multilingual@001",
  "input": "text",
  "dimensions": 1,
  "auto_truncate": true,
  "task_type": "RETRIEVAL_QUERY",
  "title": "text",
  "encoding_format": "text"
}
201Success

No content

Last updated